1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
use std::collections::{HashMap, HashSet};
use itertools::Itertools;
// NOTE: PartialOrd and Ord have no sense, but it is needed to sort them somehow
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct Cube {
t: usize,
f: usize,
}
impl Cube {
fn cost(&self) -> usize {
self.t.count_ones() as usize + self.f.count_ones() as usize
}
fn covers(&self, minterm: usize) -> bool {
let mask = self.t | self.f;
minterm & mask == self.t && !minterm & mask == self.f
}
fn combine(&self, other: &Self) -> Option<Self> {
let dt = self.t ^ other.t;
let df = self.f ^ other.f;
if dt == df && dt.count_ones() == 1 {
Some(Self {
t: self.t & other.t,
f: self.f & other.f,
})
} else {
None
}
}
}
fn cube_to_string(n: usize, cube: &Cube) -> String {
let mut s = String::new();
let Cube { mut t, mut f } = *cube;
for _ in 0..n {
match (t & 1, f & 1) {
(1, 0) => s.push('1'),
(0, 1) => s.push('0'),
(0, 0) => s.push('x'),
_ => unreachable!(),
}
t >>= 1;
f >>= 1;
}
s.chars().rev().collect()
}
fn cube_to_var_string(vars: &[&str], cube: &Cube) -> String {
let mut used_vars: Vec<String> = Vec::with_capacity(vars.len());
let Cube { mut t, mut f } = *cube;
for i in (0..vars.len()).rev() {
match (t & 1, f & 1) {
(1, 0) => used_vars.push(vars[i].into()),
(0, 1) => used_vars.push(format!("{}'", vars[i])),
(0, 0) => (),
_ => unreachable!(),
}
t >>= 1;
f >>= 1;
}
used_vars.into_iter().rev().join(" * ")
}
fn minimize_prime_implicants(n: usize, minterms: &[usize], maxterms: &[usize]) -> Vec<Cube> {
let minterms_set: HashSet<_> = minterms.iter().copied().collect();
let maxterms_set: HashSet<_> = maxterms.iter().copied().collect();
let mut anyterms_set = HashSet::new();
for i in 0..2usize.pow(n as u32) {
if !minterms_set.contains(&i) && !maxterms_set.contains(&i) {
anyterms_set.insert(i);
}
}
let mask = (1 << n) - 1;
let initial_cubes: Vec<_> = minterms_set
.union(&anyterms_set)
.sorted()
.map(|&i| Cube { t: i, f: !i & mask })
.collect();
let mut covered = vec![vec![false; initial_cubes.len()]];
let mut cubes = vec![initial_cubes];
for iteration in 0..n {
let current_covered = &mut covered[iteration];
let current_cubes = &cubes[iteration];
let mut new_cubes = HashSet::new();
for i in 0..current_cubes.len() {
for j in i + 1..current_cubes.len() {
let a = ¤t_cubes[i];
let b = ¤t_cubes[j];
if let Some(combined_cube) = a.combine(b) {
current_covered[i] = true;
current_covered[j] = true;
new_cubes.insert(combined_cube);
}
}
}
covered.push(vec![false; new_cubes.len()]);
cubes.push(new_cubes.into_iter().collect());
}
let mut final_cubes = vec![];
for (iteration, iteration_cubes) in cubes.into_iter().enumerate() {
for (i, cube) in iteration_cubes.into_iter().enumerate() {
if !covered[iteration][i] {
final_cubes.push(cube);
}
}
}
final_cubes.sort();
final_cubes
}
fn print_prime_implicants_table(n: usize, minterms: &[usize], prime_implicants: &[Cube]) {
println!("Prime implicants:");
for (i, prime_implicant) in prime_implicants.iter().enumerate() {
let cube_str = cube_to_string(n, prime_implicant);
println!("{i}: {cube_str}");
}
println!();
println!("Prime Implicants Table (PIT):");
print!(" ");
println!(
"{}",
(0..minterms.len())
.map(|i| format!(" {} ", minterms[i]))
.join("")
);
for (i, prime_implicant) in prime_implicants.iter().enumerate() {
print!("{i}");
for &minterm in minterms {
if prime_implicant.covers(minterm) {
print!(" x ");
} else {
print!(" ");
}
}
println!();
}
}
fn solve_prime_implicants_table(minterms: &[usize], prime_implicants: &[Cube]) -> Vec<Cube> {
let mut table: HashSet<(usize, usize)> = (0..prime_implicants.len())
.cartesian_product(0..minterms.len())
.filter(|&(i, j)| prime_implicants[i].covers(minterms[j]))
.collect();
let mut selected_implicants = vec![false; prime_implicants.len()];
loop {
// Select essential minterms
let mut minterms_freq = vec![0; minterms.len()];
table.iter().for_each(|&(_, j)| minterms_freq[j] += 1);
table
.iter()
.for_each(|&(i, j)| selected_implicants[i] |= minterms_freq[j] == 1);
// Check if minterms are fully covered
let mut covered_minterms = vec![false; minterms.len()];
table
.iter()
.filter(|&&(i, _)| selected_implicants[i])
.for_each(|&(_, j)| covered_minterms[j] = true);
if table.is_empty() || covered_minterms.iter().all(|&v| v) {
break;
}
// Removing essential implicants
let new_table: HashSet<_> = table
.iter()
.filter(|&&(i, j)| !selected_implicants[i] && !covered_minterms[j])
.cloned()
.collect();
table = new_table;
if table.is_empty() {
// All implicants are used
break;
}
// Finding minterm coverage by implicants
let mut implicants = HashSet::new();
let mut covered_by_implicants: HashMap<usize, HashSet<_>> = HashMap::new();
table.iter().for_each(|&(i, j)| {
implicants.insert(i);
covered_by_implicants.entry(i).or_default().insert(j);
});
// Removing implicants by cost when essentials are not found
// NOTE: when checking combinations, implicants must be sorted, to give constant result
// (If not, it will variate due to order in HashSet)
let mut removed = false;
let mut implicants_to_remove = vec![false; prime_implicants.len()];
for (a, b) in implicants.iter().sorted().tuple_combinations() {
let a_set = &covered_by_implicants[a];
let b_set = &covered_by_implicants[b];
let eq = a_set == b_set;
let a_cost = prime_implicants[*a].cost();
let b_cost = prime_implicants[*b].cost();
if eq && a_cost >= b_cost {
implicants_to_remove[*a] = true;
removed = true;
} else if eq {
implicants_to_remove[*b] = true;
removed = true;
}
}
if removed {
let new_table: HashSet<_> = table
.iter()
.filter(|&&(i, _)| !implicants_to_remove[i])
.cloned()
.collect();
table = new_table;
} else {
// We can't remove implicants by cost, have to choose by ourselves.
// NOTE: this leads to non-minimal solution
// NOTE: this SHOULD NOT happen, as we are filtering equal implicant costs too
todo!()
}
}
prime_implicants
.iter()
.zip(selected_implicants)
.filter(|&(_, select)| select)
.map(|(cube, _)| cube)
.copied()
.collect()
}
fn minimize(n: usize, minterms: &[usize], maxterms: &[usize]) -> Vec<Cube> {
let prime_implicants = minimize_prime_implicants(n, minterms, maxterms);
print_prime_implicants_table(n, minterms, &prime_implicants);
solve_prime_implicants_table(minterms, &prime_implicants)
}
fn main() {
let vars = ["X4", "X3", "X2", "X1"];
let minterms = [0, 1, 2, 3, 4]; // Термы со значением 1
let maxterms = [5, 6, 7, 8, 9]; // Термы со значением 0
let min_cubes = minimize(4, &minterms, &maxterms);
println!("Итоговые термы: ");
for cube in min_cubes {
println!(
"{} -> {}",
cube_to_string(4, &cube),
cube_to_var_string(&vars, &cube)
);
}
}
|